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Isoprene is emitted by a significant
fraction of the world’s vegetation.

Isoprene makes leaves more thermoto-
lerant, yet we do not fully understand
how. We have recently shown that
isoprene stabilizes thylakoid membranes
under heat stress. Here we show that
heat-stressed, isoprene-emitting trans-
genic Arabidopsis plants also produce a
lower pool of reactive oxygen and reac-
tive nitrogen species, and that this was
especially due to a lower accumulation
of H2O2 in isoprene emitting plants. It
remains difficult to disentangle whether
in heat stressed plants isoprene also
directly reacts with and quenches reac-
tive oxygen species (ROS), or reduces
ROS formation by stabilizing thylakoids.
We present considerations that make
the latter a more likely mechanism, under
our experimental circumstances.

Biogenic isoprene emission results some-
times in a very large loss of carbon and
energy from plants, especially under stress
conditions when carbon uptake is largely
inhibited.1 Thus, it is likely that isoprene
biosynthesis provides some benefit to
plants to balance the negative selection
pressure that would come from such a
large loss of energy and carbon. In the
search for isoprene function, two theories
have received increasing attention. On
one side, isoprene was thought to stabilize
membranes. This seems to be predomi-
nantly related to the lipophylic properties
of isoprene and its ability to intercalate
into membranes and strengthen them
under conditions that make them fragile,
especially heat stress.2 Earlier research

indeed demonstrated that isoprene-
emitting plants are more tolerant to heat
stress.3-7 On the other side, isoprene was
thought to quench reactive oxygen species
(ROS) inside leaves, therefore indirectly
providing a general antioxidant action that
could be seen under multiple stresses.8

This would explain why isoprene also pro-
tects leaves from strongly oxidative species
such as ozone9-11 or singlet oxygen.12,13

Velikova et al.,14 using several different
biophysical techniques, directly assessed
the impact of isoprene on thylakoid intact-
ness and functionality. Circular dichroism
measurements indicated that isoprene
emission allowed macrodomains of thyla-
koid membranes with embedded photo-
system II complexes to remain stable when
exposed to temperatures 5–8°C higher in
isoprene-emitting Arabidopsis plants than
in non-emitting plants. The position of
the main thermoluminescence peak (QB

peak) in isoprene-emitting plants was
shifted up by about 10°C suggesting
modifications in the lipid environment
due to the presence of isoprene. Here
ancillary data from this recent work14

are presented. We show that isoprene-
emitting transgenic Arabidopsis plants
accumulated less ROS and similar amount
reactive nitrogen species (RNS) in com-
parison to non-emitting wild-type plants,
in response to heat stress.

Transgenic plants are great tools to
study the impact of single traits on whole
plant physiology. Arabidopsis plants were
transformed by one of us to introduce
the gene encoding for isoprene synthase,
the enzyme that make isoprene from
its substrate, dimethylallyl diphosphate,
DMADP.15 The amounts of NO and
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H2O2, two key molecules in plant signal-
ing inducing hypersensitive responses to
stress,16,17 were measured in wild-type and
IspS plants before stress at growth temper-
ature (22°C) and after exposure to heat
(38°C; Fig. 1) for 48 h. A significant
amount of research has been recently
devoted to unravel the possible interac-
tions of NO with ROS, and how these
interactions can modulate the signaling
of stress responses.19,20 Maintenance of
physiological ROS levels is essential to
ensure an accurate execution of their
signaling functions, and to prevent their
toxicity. Therefore, plants have evolved
an antioxidant system composed of
enzymatic and non-enzymatic antioxidants
to harmlessly scavenge excessive ROS
production.21 However, when plants are
exposed to unfavorable environmental
conditions a rapid increase in ROS and
RNS production (the so called “oxidative
burst”) is often induced.22 Indeed, a
significant increase of H2O2, and NO
was found in both wild-type and isoprene-
emitting heat-stressed Arabidopsis plants
(Fig. 1). However, the accumulation of
H2O2 was substantially higher in wild-
types than in IspS lines, whereas NO
increased similarly in the two plants
compared with pre-stress conditions.

By changing the balance between NO
and H2O2 under heat stress conditions,
isoprene emission may also modify the
signaling pattern of these molecules.16

When isoprene is not produced, the simu-
ltaneous accumulation of H2O2 and NO
may trigger cell death signaling, whereas in
isoprene-emitting plants the accumulation
of H2O2 and NO may not reach toxic
levels or their ratio may not be adequate.
Consequently, the signaling action of the
two molecules might be dimmed and hyper-
sensitive responses might be prevented.

Why is only H2O2 accumulation
reduced in Isps plants? In past experiments
with plants naturally emitting isoprene
the amount of both H2O2

9 and NO23 was
reduced and it was suggested that iso-
prene could directly react with ROS and
RNS.8 However, we note that: i) NO
accumulation was found to be reduced
in isoprene-emitting plants compared
with isoprene-emitting plants exposed to
ozone,23 but may not be affected in
response to a stress that does not involve
direct oxidation of the medium, as in our
heat stress experiment; ii) NO is not a
very reactive molecule and the rate con-
stant of its reaction with isoprene would
require a large concentration of isoprene
in the leaves for the reaction to occurs.1

Such a large isoprene concentration may
be found in natural, strong emitters but
not in transgenic Arabidopsis that emit
ten times less than strong emitters14; iii)
the attenuated increase of H2O2 in IspS
lines may not directly involve H2O2

reactivity with, and consequent quenching
by isoprene. Lower accumulation of

H2O2 may be an indirect consequence of
preserved functionality of photosynthetic
regulatory mechanisms in IspS lines, in
turn due to isoprene-induced membrane
stabilization.14 If the photochemical reg-
ulatory apparatus is preserved, then the
photosynthetic electron transport rate
runs more efficiently as we already demon-
strated,14 and photochemical energy is not
dissipated through direct oxygen photo-
reduction.24 Thus the lower H2O2 gen-
eration might be due to less oxygen
photoreduction and consequently less
generation of dangerous levels of ROS.25

Isoprene general protection against
environmental stresses is well known.8

Theoretically, isoprene may both streng-
then membranes26 and quench reactive
compounds, predominantly reactive oxy-
gen species.8 It might be argued that heat
stress specifically affects membrane stabi-
lity, and thus should make isoprene pro-
tection particularly evident if isoprene
only strengthens membranes. However,
the relationship between ROS and mem-
brane stability is shown in a cartoon
in Figure 2. If ROS damage membranes
and damaged membranes lead to ROS
production then a feedforward loop
can occur. Stresses that make ROS
(e.g., ozone) and stresses that damage
membranes (e.g., heat) will activate the
feedforward cycle and lead to H2O2

accumulation and eventually cell death.
Isoprene could stop this feedforward cycle
in either of two ways: (1) quenching the
ROS, and (2) stabilizing membranes. If
isoprene quenches ROS the products of
the isoprene/ROS interaction need to be
considered. One prominent product is
methylvinyl ketone, which could be cyto-
toxic.27 The results of Velikova et al.14

allow speculation that membrane stabili-
zation is a major mechanism by which
isoprene helps plants tolerate abiotic
stress of many different forms.
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Figure 1. Increase of NO (pink) and H2O2 (purple) contents in wild-type (non-emitting) and
transgenic IspS (isoprene-emitting) Arabidopsis plants after exposure to heat (38°C for 48 h). Values
are percent increase with respect to pools of NO and H2O2 detected in wild-type and IspS plants
grown at 22°C. Details on measurements of NO emission and calculation of NO concentration
inside the leaves, and on determination of H2O2 content are described in Velikova et al.18
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Figure 2. Simplified diagram showing two possible effects of isoprene (in green). If there is a central cycle in which ROS leads to membrane damage and
membrane damage provides a signal for production of ROS (in blue), this feedforward loop could be initiated by many different stresses (e.g., ozone or
heat stress) and could also be stopped by several different mechanisms (e.g., membrane stabilization or quenching of ROS). Isoprene is thought to lead
to both, and indeed membrane are strengthened14 and ROS are quenched (this work, Figure 1) in genetically modified IspS Arabidopsis producing
isoprene and exposed to heat stress. However, because heat stress primarily impinges on membranes, the demonstration by Velikova et al.14 that
significant membrane stabilization is conferred by isoprene allows speculation that quenching of ROS is a side effect, and does not account for the
protective effects observed for isoprene in heat stressed plants.
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